
Quasi-classical formalism for Ising model algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 1655

(http://iopscience.iop.org/0305-4470/9/10/017)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 9, No. 10, 1976. Printed in Great Britain. @ 1976. 

Quasi-classical formalism for Ising model algebras 
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Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, 
Virginia 24061, USA 

Received 23 March 1976, in final form 15 June 1976 

Abstract. A quasi-classical formalism is developed for spin algebras characteristic of king 
models, that is, an algebra in which all elements commute. Spin operators and their products 
are mapped onto continuous variables while traces are re-expressed as integrals over these 
variables. 

1. Introduction 

A few years ago (Kaplan and Summerfield 1969, Kaplan 1971), a quasi-classical spin 
formalism was developed which allows the exact quantum spin dynamics of physical 
systems to be expressed in the language of continuous variables. The continuous 
variables are unit vectors ni(i = 1,2, . . . , N ) ,  one for each particle spin. In essence, spin 
matrices are replaced by functions of continuous variables while spin traces are 
identified with integrals of some function of these variables. This quasi-classical 
formalism is a generalization to spin theory of methods (Wigner 1932, Moyal 1949, 
Groenewold 1946) which have been developed for position and momentum variables 
beginning with Wigner’s work in 1932. 

These latter phase space methods have been extensively studied by Agarwal and 
Wolf (1970) who have shown their connection to the Sudarshan (1963a, b) and Glauber 
(1963) coherent state representation. Using spin coherent states (Radcliffe 197 l), 
Kutzner (1973) has developed a phase space representation for spin systems which is 
closely related to the quasi-classical spin formalism of Kaplan and Summerfield. A 
review of the key concepts of the quasi-classical method for systems with both spin and 
position-momentum variables has been given by Mirkovitch and Summerfield (1973). 
These quasi-classical methods provide a natural framework for going to the classical 
limit of quantum theory. By this we mean that such a framework allows one to obtain by 
perturbation theory quantum corrections to classical spin problems which are exactly 
solvable, such as the one-dimensional isotropic Heisenberg model (Fisher 1964) and 
Ising model (Thompson 1968). For example, the classical theory provides the zeroth 
approximation and perturbation in the reciprocal of the spin quantum number S 
provides the first-order correction to the classical theory. 

The quasi-classical formalism presented by Kaplan and Summerfield was for matrix 
algebras satisfying the commutation relations 

[S,, & I =  iepmS,, 
where eWm is the totally antisymmetric three-tensor. Such a formalism can be applied, 
for example, in the study of the Heisenberg model (Chang et a1 1971, Chang and 
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Summerfield 1971, Ebara and Tanaka 1974, Harrigan and Jones 19737). Our purpose 
in this paper is to outline the quasi-classical spin formalism for matrix algebras which 
contain only commuting matrices. We have in mind matrices characterizing Ising 
models. Thus when we refer to operators in the succeeding parts of this paper, we shall 
mean such commuting matrices. The formalism presented here is applied to the 
one-dimensional Ising model with arbitrary spin in a separate communication (Bowden 
and Kaplan 1976). This application provides a uniform treatment for all values of spin 
including the classical limit. 

Our presentation proceeds as follows: in § 2 we introduce the general mapping 
procedures for a single particle of spin S.  The associated spin operator is denoted by S'. 
In § 3 we present the formulae for computing traces and in 0 4 we give the generaliza- 
tion to many-particle systems. 

2. General formalism 

In this section we state and verify the mapping rules for a spin-S algebra formed by a 
spin operator S', an identity operator I, and arbitrary functions of the spin operator for 
which we use the notation A(S'). The mappings for S' and I are given by (we denote 
mappings by arrows, +) 

S' + SR = S,(R) 

I + 1 = Iw(R), 

(1) 

( 2 )  
where S is the spin quantum number and R is a continuous variable with a range 
(-1, +l). We call the function into which the operator has been mapped the 'Wigner 
equivalent' function. Thus Sw and Iw are the 'Wigner equivalent' functions for the 
operators S' and I. 

To obtain the mappings of functions of S' we employ a building up principle which 
can be stated as follows. If Aw(fl) and Bw(R) are the Wigner equivalents of two 
arbitrary operators A (S')  and B(S'), then the Wigner equivalent of the product, 
A(S')B(S'), is obtained by the rule 

and 

(AB)w(n> = Aw(Q)GBw(fi), (3) 
where the left-right differential operator (Groenewold 1946) G is given by 

(The arrows indicate directions of differentiation.) 
We illustrate equations ( 2 ) ,  (3) with a spin-3 system obeying the algebraic relation 

(s')2 = :I. 

In this ( S  = i) case we have from equation (1) 

THarrigan and Jones employ coherent spin states. 
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and from (4) 

Substituting these expressions into equation (3), we have 

[S'S']w = ($Q)G(iil) = i=iZw (9) 

which shows that equation ( 5 )  is preserved under the mapping. 

algebra. By this we mean that if we have an algebraic equation of the form 
We must now verify that we have indeed obtained a one-to-one mapping of the 

A(S")B(S' )  = C(S') (10) 

then our mapping rules guarantee that 

AwGBw=Cw.  (11) 

PmPm. = Smm.Pm.. (12) 

[PmIwG[Pm,lw = &"[Pm'lw (13) 

We do this by considering the equations for the projection operators P,, 

We will show below that 

with the mapping for Pm being given by 

where (ks) is a binomial coefficient. First, however, we will show that the mapping given 
by equation (14) is in agreement with the mappings (1) and (2) of S' and I. This is done 
by noting that the decompositions of I and S' in terms of projection operators are 

m=+S 

m=-S 
I =  c Pm 

and 
m=+S 

m=-S 
S ' =  mPm. 

Using the binomial theorem we find 

and 

f m[PmIw= m=-S f ~ [ ( l + Q ) s ' m ( l - Q ) s - m ] ( ~ m ) = S Q ,  2 (18) 
m=- S 

so that the projection operator mapping is indeed compatible with that of the funda- 
mental operators S' and I. Since every operator can be decomposed into projection 
operators, the validity of equation (13) implies the validity of any equation of the form 
of equation (1 1) providing equation (10) is true. 



1658 R L Bowden and D M Kaplan 

To prove equation (13) we first rewrite the Wigner equivalent of the projection 
operator in the form 

and note that this is equivalent to 

with A = S - m. Thus we have 

[ p m l ~ G t p m , l ~  
1 1  d 

=- "-;TSZ lim- [ ( z + l ) + ~ ( l - ~ ) ] ~ ~ G [ ( ~ ~ + l ) + ~ ( l - ~ ' ) ] ' ~ ,  
(21) 

A ! A ' !  [2 ] '+o dzA dZlh' 
''-0 

where G is given by equation (4). Substituting G given by equation (4) into equation 
(21) and carrying out the left- and right-hand differentiations, we obtain 

"-0 

where 
2s 

E(z,  z',  a)= (2s)! {[z  + 1 +a( 1 - z)][z ' + 1 + a( 1 - Z') ]}2S-k 
k = O  (2s  - k ) ! k !  

x [( 1 - a2)( 1 - z)( 1 - z')Ik. 

This last term can, by the binomial expansion, be reduced to 
2 s  

k =O 
E(Z, z' ,  a)= 22s (1 + f V k ( l  - a ) ~ ( . z ' ) k ( y )  

Substituting this last expression into equation (22), we obtain 

(25) 
1 2 s  

[Pm IWG[P~,IW = a m m ,  Tc( 1 + ( 1 - ( + ,> 2 

which is our desired result. 
We close this section by giving the Wigner equivalents of several operators, namely, 

(26) 
[S'S'l* = s'( "2fZ 1 (1 - a2,), 

These functions (and mappings of higher powers of S')  are implicit in the mapping of 
eiS= : 

[eiSxe]w = (cos ;e + i n  sin (28) 

where eisze is a rotation operator parametrized by the angle 8. It can be verified by direct 
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substitution that the group property of the rotation operator is indeed preserved under 
the mapping, i.e., 

lw, (29) [eis*el]w G[e1sze2] - - [cis=% 

e3=e1+e2. (30) 

where 

3. Traces 

We expect that in this type of formalism the trace of an operator goes over into an 
integral over its Wigner equivalent. The rule for obtaining the trace of an arbitrary 
operator A (S') from its Wigner equivalent Aw(R) is, for a particle of spin S, 

TrA(S')=- I-: Aw(fl) dR. (3 1) 

This can be seen by noting that if A is a projection operator P,, then the left-hand side 
of equation (31) has value unity. However, from equation (14) the right-hand side of 
equation (31) has the same value since 

2 s + 1  
(P,,,)wdR =- 's i - '  I_: ( ~ m ) $ [ ( l + f l ) s + m ( l - R ) s - m ] d R = l .  (32) 2 I ,  2 

Again, since an arbitrary operator can be decomposed into projection operators, 
equation (3 1) follows immediately. 

The trace of the product of operators A(S') and B(S") is given by 

This can then be integrated by parts to obtain 

r l  r l  r l  

where c is the right differential operator 

Some of the properties of the operator are shown in the appendix. One of these is 
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where the operator L2 is given by 

R L Bowden and D M Kuplun 

Note that the eigenfunctions of L2 are Legendre polynomials having eigenvalues 
l ( l+ l), i.e., 

L2P/(fl) = 1(1+ l)P/(fl). (38) 
Obviously the eigenfunctions of G are also Legendre polynomials. In the appendix the 
eigenvalues are shown to be [(2S - 1)!(2S +1+ 1)!]/[(2S)!(2S + l)!], i.e., 

(2s  - 1)!(2S + 1 + l)! 
(2S)!(2S+ l)! PI (a). GP/(Q) = 

To illustrate the above, consider a simple S = f problem. Let 

A =ao+alS* 

and 

B = bo + b1S'. 

The Wigner equivalents of these operators are 

A w  = a0 + $U 1fl 

and 

Bw=bo+$b l f l .  

In addition 

G =  1+L2.  

From the rule (33), we obtain 
1 

Tr AB = I-, [(l + L 2 ) ( u ~ + f u l n > l ( b ~ + f b l f l )  dfl 

(39) 

4. Many-partide systems 

The generalization to a system of N particles is straightforward. We have 

(46) 

(47) 

Sf + sfli = ( S f ) W ,  i = 1 , .  . . , N 

and 

l i  + 1 = (&)w, i = 1, . . . , N. 

The operators G and 0 now are products of the Gi and Gi of the individual particles, 
i.e., 

N 

G = ~ G ~  
i = l  
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and 
N 

t5 = n Gi, 
i = l  

where the Gi and Gi are given by (cf equations (4) and (35)) 

and 

1661 

(49) 

Traces are now multiple integrals, i.e., for an arbitrary operator we have 

Tr A($, S; . . . Sk) = [@ + l)]” / . . . / Aw(fll, fi2, . . . , Cl,) dill . . . dnN. (52) 

We wish to close this section with some remarks about the Wigner equivalent of the 
density matrix. This density function satisfies the Wigner equivalent of the Bloch 
equation 

with a formal ‘solution’ 

1, (54) - -BHwG w - e  

where Hw is the Wigner equivalent of the Hamiltonian H and HwG is a right 
differential operator. For an exchange interaction of the form 

H = 1 J$fS,’ (55)  
i.i 

we have 

H~ = s2 ~ ~ ~ a ~ f i ~  
i,i 

and 

HwG = 2 Jij Oi 0, 
i.j 

where the operator Bi is given by 

a 
aai ’ Oi = sai +$(1 -a;) - 

Appendix 
In this appendix we will prove by induction that 

(57) 

(58)  
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which makes equation (36) self-evident. Employing the notation 

A = d/dfl 

and 

T= 1 -a2, 
we can express Qk as 

Qk =AkTkAk =Ak-'[A, Tk-l]TAk +Ak-'Tk-'ATAAk-' 

=Ak-'[A, ?-']TAk +Ak-l[ATA,Ak-l]+Ak-lTk-lAk-lATA. (A.4) 

ATA = -L2 (-4.5) 

Since 

the last term in equation (A.4) is -Qk-lL2. To complete the proof we must demonstrate 
that the first two terms yield Q k - l k ( k  - 1). The two terms give 

A"-'Tk-'([A, T]Ak(k - l)+A[T, Ak-']AJ 
k 

j = 1  
=Ak-'7*'[(k-1)( A1 . . .  A,-l[[A, T],A,]A,+, . . .  Ak+Ak[A, T]) 

+A( 'fl A l . .  .Aj-l[[T,Aj]],A,+l.. . Ak-lAk]+Ak-l[T,A])], (A.6) 
j = 1  

where Ai = A. Collecting terms and noting that 

[[A, T], A1=2 (A.7) 

we find that the right-hand side of equation (A.6) becomes 

k-1 k 

Ak-'Tk-'(2A*-'k(k-1)-2AX' j = 1  1 j = j + l  1 l ) = A k - ' f - ' A k - ' k ( k - l ) .  (A.@ 

This proves the recursion equation (A.l) for the Qk. 

eigenvalues. That is, from equation (36) 
The representation for e given by equation (36) can be used to extract its 

)PAW. 
2s (21 + k)! (2s - k)! 

& = I  ( l - k ) !  k! =(1+ - 

But from an identity due to Rothe as quoted by Gould (1969) 

(A.lO) 

Using equation (A. 10) in equation (A.9) with x = I + 1, b = 1, and y = 2s - I  + 1, we get 
equation (39) almost immediately. 

Y ( y + : F k - k ) ) -  - X + Y  x + y + b n  
y + b ( n - k )  x + y + b n (  n ) '  
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